6/H-28 (viii) (Syllabus-2015)

2018

(April)

STATISTICS

(Honours)

Survey Sampling and Non-parametric Inference)

[STEH-62(TH)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

UNIT-I

- 1. (a) What is circular systematic sampling?
 Write the procedure of drawing such
 type of samples. How does it differ from
 linear systematic sampling?
- 4
- (b) If the population consists of a linear trend, $Y_i = i$, i = 1, 2, ..., k, then prove that

$$\operatorname{var}(\overline{y}_{st}) \le \operatorname{var}(\overline{y}_{sus}) \le \operatorname{var}(\overline{y}_n)_R$$
 8

8D**/1866** (Turn Over)

- 2. (a) In a simple random sampling without replacement, show that the regression estimator of mean is a biased estimator. Obtain the expression for its approximate variance.
 - (b) Prove that in simple random sampling without replacement, for large n an approximation to the variance of \hat{R} is given by

$$V(\hat{R}) = \frac{1-f}{n\bar{X}} \sum_{i=1}^{N} \frac{(y_i - Rx_i)^2}{N-1}$$

where $f = \frac{n}{N}$ is the sampling fraction and \hat{R} is the estimator of ratio $R = \frac{Y}{X}$.

UNIT-II

- 3. (a) What do you mean by cluster sampling?
 Give an example of it. Write the advantages of cluster sampling.
 - (b) If n clusters are selected from N clusters by simple random sampling without replacement, then show that \overline{y}_c is an unbiased estimator of \overline{Y} with variance

$$V(\overline{y}_c) \approx \frac{1-f}{nM} S^2 [1+(M-1)\rho]$$

where \overline{y}_c is the cluster mean, \overline{Y} is the population mean/element, ρ is the intracluster correlation coefficient and M is the cluster size.

- (a) For a single-stage cluster sampling with equal size cluster, under SRSWR, obtain the estimate of population total along with its variance.
 - (b) Write a note on relative efficiency of cluster sampling.

UNIT-III

5. In two-stage sampling, if n units are selected from N primary units and from each selected primary unit, if m units are selected from M secondary units by SRSWOR scheme, then show that sample mean \overline{y} is an unbiased estimator of \overline{Y} and the variance of this estimator is

$$V(\overline{y}) = \frac{1 - f}{n} S_b^2 + \frac{M - m}{M} \frac{Sw^2}{nm}$$

- 6. (a) What is two-stage sampling? Give an example of it. Write the advantages and uses of two-stage sampling.
 - (b) Obtain unbiased estimator of V(y) given in Question No. 5.

8D/1866

(Continued 8D**/1866**

(Turn Over)

4

7

7

4

UNIT-IV

- 7. (a) What do you mean by 'order statistics'? What purpose does it serve?
 - (b) Define cumulative distribution function and probability density function of a single-order statistic. Also deduce their expressions.
- 8. Obtain the expression for joint p.d.f. of two-order statistics and hence obtain the distribution of range.

UNIT-V

- 9. (a) Explain what is meant by non-parametric methods. Distinguish between parametric and non-parametric approaches to the theory of statistical inference. 2+5'
 - b) Derive sign test for two-sample problem.
- 10. Write short notes on the following: $5\frac{1}{2} \times 2^{-1}$
 - (a) Mann-Whitney test
 - (b) Kolmogorov-Smirnov test (one sample)
